

PロRTMVETMGE CRILGH17ECT MCIDUE

TECHNICAL MANUAL.

SERIAL No. DJW-DVT-OOP

INTERNATIONAL TELECOMM, INC. Hunt Valley, Maryland 21031
\qquad \therefore.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

Fig. 1. Master Board - Component Locations 1
Fig. 2. Master Board - Subassembly Locations 2
Fig. 3. Processor Board - Component Locations 3
Fig. 4. Unit Connections 4
Fig. 5. Front Panel Controls . 4
Fig. 6. Unit Schematic .. 7

PARAMETRIC EOUALIZER TEST REPORT
 MODEL MEP-130
 MASTER BOARD/UNIT S/N. L LGHT

TEST:

1. POWER SUPPLY VOLTAGES (QUIESCENT)
A. +28 Volt audio supply
B. -28 Volt audio supply
C. 28 Volt lamp supply
D. +15 Volt regulator (master board)
E. L.E.D. Indicator
2. PROCESSOR BOARD
A. Lo frequency shelving function
B. Hi frequency shelving function
C. D.C. Offset appearing at output
3. LO FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level calibration
C. Sliape control
4. MID FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level colibration
C. Shape control
5. HI FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level calibration
C. Shape control
6. OVERALL EQUALIZER PERFORMANCE
A. Frequency response (Ref. 1000 Hz .)
B. Square wave till @ 20 Hertz
C. Square wave overshoot @ 20 kHz .
D. Hum \& noise (Input term: 560 Ohms)
E. THD (All level controls at zero)
F. Mdx. output level into 600 Ohms
G. Insertion gain (loss) @ 1000 Hz .
H. Pot noise \& switch clicks
I. Listening test

S/N
1200 Hz .
$-13.02 \quad+12.85$ OK Broad OK Sharp
S/N
3200 Hz .
-12.86 dB . atten. +12.65 dB boost OK Broad OK Sharp
$-\underline{0.13} \mathrm{~dB}_{10 \mathrm{~Hz} .}-\underline{0.59} \mathrm{~dB} .40 \mathrm{kHz}$

- O-Percent
- 0 -dB.

DATE 092176
DATE \qquad

(i)

PARAMETHIC FOUALIZER TEST REPORT

TEST:

1. POWER SUPPLY VOLTAGES (QUIESCENT)
A. 128 Voll ausin supply

1!.
B. -28 Volt audio supply
C. 28 Volt lamp supply
D. +15 Volt regulator (master board)
E. L.E.D. Indicator
2. PROCESSOR BOARD
A. Lo frequency shelving function
B. Hi frequency sletving function
C. D.C. Offset appearing at output
3. LO FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level calibration
C. Shape control
4. MID FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level calibration
C. Shape control
5. HI FREQUENCY EQUALIZER BOARD
A. Calibration frequency
B. Level calibration
C. Shape control
6. OVERALL EQUALIZER PERFORMANCE
A. Frequency response (Ref. 1000 Hz .)
B. Square wave tilt @ 20 Hertz
C. Square wave overshoot @ 20 kHz .
D. Hum \& noise (Input term: 560 Ohins)
E. THD (All level controls at zero)
F. Midx. output levei into 600 Ohms
G. Insertion gain (loss) @ 1000 Hz .
H. Pot noise \& switch clicks
I. Listening test

$\begin{aligned} & \text { 128. } 2 \text { volts } \\ & 28.0 \text { Volts } \end{aligned}$	$\begin{array}{r} \ldots \\ \cdots A . \\ m A . \end{array}$
27.9 volts	-mA.
${ }_{+14} 14$ Volts	
OK	
S / N	
OR	
QR	

$S / N \frac{120}{-\frac{12.82}{O K} \mathrm{~Hz} \text {. atten. } \stackrel{+12.56}{+} \mathrm{dB} \text {. boos }}$

S/N

S/N
3200 Hz .
$-12,27 \mathrm{~dB}$. atten. ${ }^{-12,09} \mathrm{~dB}$ boost OK Broad OKK Sharp
$-0,14 \mathrm{~dB} \cdot 1 \dot{0} \mathrm{~Hz},-0,71 \mathrm{~dB} .40 \mathrm{kHz}$.

- O - Percent

NONE Percent

\qquad $+27.7 \mathrm{dBm}$. 0 dB . OK OK

(i)

Infinitely variable selectivity or " 0 " from 4 to 14 dB per actave. (inner knob)
Infinitely variable frequency shelving curves.
(Full caw on inner knob)
Infinitely variable selectivity or " 0 " from
4 to 14 dB per octave. (inner knob)
 of an acoustical guitar illustrating the combined effects of a broad peak, low frequency shelf, and a sharp notch. The control settings used to produce this characteristic are shown.

Infinitely variable selectivity or " 0 " from 4 to 14 dB per octave (inner knob) Infinitely variable frequency shelving curves. (Full cew on inner knob)

Equalizer in or out switch

Figure 1

GENERAL DESCRIPTION:

This device is a solid-state equalizer utilizing active circuit techniques to achieve results not otherwise obtainable. The system consists of two sub-sections -(1) shelving equalization and (2) Parametric equalization. The shelving curves are acijustable in both boost (or attenuation) and corner frequency. The high and low frequency shape controls, when turned to their fully counter-clockwise rotation automatically programs the internal frequency shaping networks to alter the peak (dip) equalization characteristics to high and low band shelves. The comer frequency for the shelves is adjusted by turning the high and low frequency controls. it is possible to utilize shelving characteristics at the extremes of the audio passband while inserting a peak (dip) within the range of the mid frequency control.

The Parametric section includes three groups of equalization controls in broadly overlapping frequen. cy ranges as follows:

Low	10 Hz. to 800 Hz.
Mid	100 Hz. to $8,000 \mathrm{~Hz}$.
High	400 Hz . to $25,600 \mathrm{~Hz}$.

Each frequency group consists of three infinitely variable controls.
a. Frequency selector.
b. Shape (Q) - from 4 dB /octave through $14 \mathrm{~dB} /$ octave, sheelf/peak switch.
c. Level -12 dB attenuation through 12 dB of boost.

FIG. 1 MASTER BOARD COMPONENT LOCATIONS
PAGE 1

Each unit has been performance verified and operated for $\mathbf{7 2}$ hours before packaging. Should you encounter any problems upon initial operation, please refer to the section "Troubleshooting" before con? tacting your distributor or the factory.

First, familiarize yourself with the basic unit. The unit is divided into four basic assemblies.
A. Front Panel/Controls/Connectors.
B. Master Board.
C. Equalizer Boards (3).
D. Processor Board.

CONNECTIONS:

Since the input is normally 100 K ohm balanced, loading of the normal 600 ohm studio line will not occur.

Particular care should be taken to avoid the formation of ground current loops; at the least they degrade the noise performance and at the worst they can cause frustrating crosstalk or noise problems
where none existed previously. External output transformers can be added by the user. The unfortunate fact is that even the best transformer degrades the performance of this device. Only the most expensive examples of winding techniques are even marginally satisfactory, but if you must have a balanced output there is a slight sweetener built in. Pick a transformer with a 300 ohm primary and a 600 ohm secondary and your output is increased by 6 dB . However, this modification changes the insertion gain of the device. It is ro longer unity, but rather +6 dB . It is necessary then, to install a 6 dB pad at the input of the equalizer.

Choice of normal operating level is left to the discretion of the user. Inasmuch as the self-noise level of the device is fixed at -84 dBm , changes in nominal operating level simply involve trade-ofís between S / N ratio and operating headroom. The most appropriate compromise under normal conditions is operation at +4 dBm nominal, although we believe that " O " level operation provides a more satisfactory overload margin (+24 dBm) under conditions of live master recording.

FIG. 2 MASTER BOARD SUBASSENIBLY LOCATIONS
PAGE 2

Since most commonly used audio cable has capacitance of 45 to 50 pf . per foot, the 10 ohm output impedance of this device will provide less degradation than a normal 600 ohm output transformer driving the same cable. Moreover, all types of devices may be bridged across the output, as long as their total im. pedance in parallel is greater than 300 ohm. The internal circuitry is very forgiving of conneciion errors and the output can safely be shorted to ground.

INSTALLATION CHECKLIST:

A. Connect the unit to a regulated D.C. power supply capable of supplying +28 VDC $@ 150 \mathrm{~mA}$ and -28 VDC @ 150 mA as follows:

Using cable connector supplied with unit, Pin 1 is on opposite end from polarizing pin.
Pin 1 - connect to negative side of 28 volt lamp supply
Pin 3- connect to positive side of 28 volt lamp supply
Pin 5-- connect to +28VDC audio supply
Pin 6-- connect to power supply common return
Pin 7 - connect to -28VDC audio supply
A companion power supply is available from the factory under the model numbers PSE-120 (will power up to two MEP-130's), PSE-240 (up to four MEP-130's), PSE-416 (up to sixteen MEP-130's). Be certain to connect to proper polarity, as damage could result to the equalizer protection diodes if polarity is reversed.
B. Connect input and output audio leads as indicated on connection diagram.
C. With equalizer function switch in the "OUT" position, feed program material into input.
D. With all controls in the straight-up position listen to the output of the equalizer. Now set the equalizer switch to the "IN" position. There shouid be no observable change in audio level or frequency response. With the high and low shape controls rotated fully CCW, rotate first one, then the other, of the shelving level controls first clockwise, then counter-clockwise. The effect should be very obvious. Return these controls to the " O " dB ("Flat") position. Turn the high and low shape controls full clockwise.
E. Turn the low-frequency Parametric Equalizer level and frequency controls clockwise. An obvious peak should be heard. Now gradually rotate the frequency control counter-clockwise. The equalized peak will then be swept from approximately 800 Hz to 10 Hz . This frequency sweep will be quite obvious as long as there is audio in the frequency range being boosted. Now rotate the same "level" control full counter-clockwise and repeat the frequency sweep test.
F. Repeat procedure " E " for the mid frequency and Hi-frequency sections. If controls fail to provide the indicated control functions, refer to the section on troubleshooting.
G. While listening to highly equalized audio, place the equalization "IN-OUT" switch in the "OUT" position. You should now hear a completely unequalized signal. There should be no transient click or thump associated with this switch actuation.
H. After the above familiarization, you are ready to begin use of the equipment. The wide frequency response of the device makes it particularly important to exercise caution in the use of the extreme upper and lower frequencies to avoid the possibility of producing energy levels which will cause either tape saturation or problems in the cutting of master discs.

FIG. 3 PROCESSOR BOARD COMPONENT LOCATIONS
PAGE 3
-

FIG. 4 UNIT CONNECTIONS

ELECTRICAL PARTS LIST
I. 30109 MASTERBOARD - PREFIX 1A
A. RESISTORS, DEPOSITED CARBON ($1 / 4$ watt $\pm 5 \%$ unless otherwise specified)

R1	39 K
R2	51 K
R3	1600
R4	1600
R5	1200
R6	39 K
R7	51 K
R8	1500
R9	1500
R10	1200
R11	39 K
R12	51 K
R13	1500
R14	1500
R15	1200
R16	Not Used
R17	10 K
R18	10 K
R19	10 K
R20	$1801 / 2$ watt
R21	$1501 / 2$ vatt
R22	27 K
R23	300
R24	36 K
R25	51 K
R26	$1301 / 2$ watt
R27	$1301 / 2$ watt
R28	Not Used
R29	Not Used
R30	51 K
R31	51 K

B. CAPACITORS

C1	Selected At Time of Test.
C2	100 pfd. @ 63 WVDC $\pm 5 \%$
C3	Polystyrene.
C4	Selected At Time of Test.
	330 pfd. @ 63 WVDC $\pm 5 \%$ C5
Polystyrene.	
C6	Selected At Time of Test.
C7	3300 pfd. @ 63 WVDC $\pm 5 \%$
	Polystyrene.
C8	22 ufd. @ 10 WVDC Solid Tant-
	alum Electrolytic.
	150 ufd. @ 35 WVDC Aluminum
C9	Electrolytic Mallory MTA-
	150F35
	150 ufd. @ 35 WVDC Aluminum
	Electrolytic Mallory MTA-
	150F35

FIG. 5 FRONT PANEL CONTROLS
PAGE 4

C10		R4	50 K Ohm Potentiometer, Carbon, Tapped, Special Taper. AllenBradley P/N JAAN100P503CA
C10	Metallized Polyester Amperex C280AE/A220K	R5	50 K Ohm Potentiometer, Carbon, Tapped Special Taper Allen-
C11	C280AE/A220K 0.22 ufd. @ 250 WVDC $\pm 10 \%$		Tapped, Special Taper. Allen- Bradley P/N JAAN $100 P 503 C A$
	Metallized Polyester Amperex C280AE/A220K	RGA,B,C	$100 \mathrm{~K} / 100 \mathrm{~K} / 5000$ Ohm Concentric Potentiometer, Carbon, w/
C 12	22 mfd . 25 WVDC Solid Tantalum Electrolytic		switch, Special Tapers, ITI P/N 11M763
C 13	23mfd. © 25 WVDC Solid Tantalum Electrolytic	R7	220 K Ohm $\pm 5 \%$ Deposited Carbon $1 / 4$ watt
C14	22 mfd . 10 W VOC Solid Tantalum Electrolytic	R8	2700 Ohm $\pm 5 \%$ Deposited Carbon $1 / 2$ watt
C15	Not Used	R9	2700 Ohm $\pm 5 \%$ Deposited Carbon
C16	Not Used		$1 / 2$ watt
C17	22mfd. @ 10 WVDC Solid Tantalum Electrolytic		

C. MISCELLANEOUS

Q1	Transistor, NPN Silicon 2 N5172
D1,D2	Diode, Silicon IN4001
J1	Connector, 9 Pin Polarized, Elco P/N 00-8129-009-603-002
J2	Connector, 9 Pin Polarized, Elco P/N 00-8129-009-603-002
J3	Connector, 9 Pin Polarized, Elco P/N 00-8129--009-․603-002
J4	Connector, 9 Pin Polarized, Elco P/N 00-8129-009-603-002
J5	Connector, P/C Board, Elco P/N 5208-02--013--001-5-200
J6	Connector, P/C Board, Elco P/N 5208--02-013-001-5-200
J7	Connector, P/C Board, Elco P/N 5208-02-013-001-5-200
J8	Connector, P/C Board, Elco P/N 5208-02-013-001-5-200
J9	Connector, 9 Pin Polarized, Elco P/N 00-8129-009-610-001
LDR1	Cadmium Sulfide Photocell/Lamp Assy. VACTEC-VTL.9A9

II. 30008-1 PANEL ASSEMBLY - PREFIX 2A
A.RESISTORS, POTENTIOMETERS

R1A,B,C. $\quad 100 \mathrm{~K} / 100 \mathrm{~K} / 5000$ ohm Concentric
Potentiometer, Carbon w/switch, Special Tapers, ITI P/N 11 M763 R2 50 K OhmPotentiometer, Carbon, Tapped, Special Taper. AllenBradley P/N JA4N 100P503CA
R3A,B,C 100K/100K/פ000 Ohm Concentric Potentiometer, Carbon, W/O switch, Special Tapers. ITI P/N 11M486
B. MISCELLANEOUS

D1
SW1
SW2
SW3
Light Emmiting Diode, Fairchild FLV-110
Part of R1C
Part of R6C
SPDT Push On, Push Oif CutlerHammer P/N SA21-SEX11
III. 30329 PROCESSOR BOARD - PREFIX 1A1
A. RESISTORS, DEPOSITED CARBON ($1 / 4$ watt \pm 5\% unless otherwise specified)

R1	10 K
R2	10 K
R3	10 Ohm
R4	51 K
R5	5100

B. CAPACITORS

C1 82 pfd. @ 500 WVDC $\pm 5 \%$ CD15ED820J03
C2 2000 mfd @ 4 WVDC Aluminum
C3 $\quad 15 \mathrm{pfd}$. @ 500 WVDC $\pm 5 \%$ RDM15CD150J03
C. MISCELLANEOUS

M1
ITI Processor Module, P/N 20320
IV. 30229 EQUALIZER BOARD - PREFIX 1A2, 1A3, 1 A4
A. MISCELLANEOUS

M1
ITI Equalizer Module, P/N 20220

TROUBLESHOOTING GUIDE

SYMPTOM	probable cause	REMEDY
L.E.D. Indicator Inoperative	1. Defective LED 2. Reversed Lamp Supply Voltage 3. Defective Resistur	1. Replace LED 2. Apply positive side of 28 VDC lamp supply to $\mathrm{J9}-3$ 3. Replace 2AR8, 2An9
No Equalization, Indicator On A. No Lo Freq. Shelving B. No Hi Freq. Shelving C. No Parametric	1. Defective Switch 1. Defective Switch 2. Shorted Resistor 1. Defective Module 2. Defective Photocell or Resistor	1. Replace 2AR1/2ASWI 1. Replace 2AR6/2ASW2 2. Replace 2AR7 1. Interchange 30229 Board with another position to isolate fault, replace faulty 20220 module. 2. Replace 1ALDR1, 1AR20, 1 AR21, 1AR26, 1 AR27.
Maximum, Minimum Equalization Levels below Published Specifications	1. Photocell Lamp Age Darkened	1. Replace 1ALDR1
Maximum, Minimum Equalization Levels Exceed Published Specifications	1. Defective Module 2. Faulty Connection on 30229 Board	1. Replace 20220 Madule 2. Inspect and Repair 30229 Board
Noise Level Excessive A. Equalization Out B. Equalization In	1. Defective Processor Module 1. Defective Equalizer Module	1. Replace 20320 Module 1. Interchange 30229 Board with another position to isolate fault. Replace faulty 20220 module
Distortion Exceeds Published Specifications	1. Defective Module 2. Defective Power Supply 3. Incorrect Termination	1. Replace 20220, 20320 2. Replace or Repair 3. Terminate unit with 300 Ohms or greater.
Excessive Hum or Ripple	1. Defective +15 volt regulator 2. Defective Unit Power Supply 3. Groundloop	1. Replace 1 A $11,1 A C 12$, 1 AC13. 2. Replace or Repair 3. Properly Shield and terminate all interconnections.
DC Offset on Output	1. DC Offset on input 2. Shorted Capacitor -	1. Remove $D C$ on input 2. Replace 1 A 1 C 2
No Output	1. Open Capacitor 2. Defective Resistor 3. Defective Module	1. Replace 1A1C2 2. Replace 1A1R3 3. Replace 20320 Module

FIG. 6 UNIT SCHEMATIC
PAGE 7

TECHNICAL SPECIFICATIONS

$$
\text { MEP - } 130
$$

ITEM	SPECIFICATIONS	NOTES
Input Impedance	100,000 ohms balanced	
Output Impedance	10 ohms	Will meet published specification looking into 300 ohms or greater
Nominal Level	0 dBm to +8 dBm	0 dBm recommended to assure 24 dBm headroom
Insertion Loss	$\pm 1.0 \mathrm{~dB}$	
Frequency Response	$10-40,000 \mathrm{~Hz} \pm 0.1 \mathrm{~dB}$	Measured at any level to +24 dB
Hum \& Noise	-95 dBm (Equalization Out) -84 dBm (Equalization In)	$20-20,000 \mathrm{~Hz}$
Distortion	Less than 0.03\% THD	Measured at any level from 0 dBm to $+24 \mathrm{dBm}(10 \cdot 40,000 \mathrm{~Hz})$
Phase Shift	Less than $15{ }^{\circ}$	All level controls set 10 "Flat" Measurement made at $20,000 \mathrm{~Hz}$
Square Wave Response	Less than 0.5\% overshoot	
Controls High Frequency Shelving	Infinitely variable	Level continuously variable $\pm 12 \mathrm{~dB}$ Slope 5 dB /octave
Low Frequency Sheiving	Infinitely variable	Level continuously variable $\pm 12 \mathrm{~dB}$ Slope 5 dB /octave
Low Frequency Equalization	Infinitely variable $10-800 \mathrm{~Hz}$	Accurate octave calibration
Mid Frequency Equalization	Infinitely variable $100-8000 \mathrm{~Hz}$	Accurate octave calibration
High Frequency Equalization	Infinitely variable $400-25,000 \mathrm{~Hz}$	Accurate octave calibration
Level Controls	Infinitely variable $\pm 12 \mathrm{~dB}$ at all equalization frequencies	Calibrated at 2 dB intervals
Shape Controls	Slope characteristics Infinitely variable 4 to 14 dB /octave	
Power Requirements	$\pm 28 \mathrm{VDC} @ 70 \mathrm{~mA}, 128$ volt; 60 mA Lamp on separate terminals. May be strapped to same power)	Connector-Elco 8190-009-605-003 or ITI 130-80

Dimensions

US.A.
metric
PHONE: A/C 301-666-7770

The operating controls on the Parametric Equalizer MEP-130 are shown in Figure 1. All controls are infinitely and continuously variable -- no stops, or detents or arbitrary positions. The equalizer module has three overlapping frequency sections -- low, midrange and high frequency. The three dual concentric knobs control the manipulation of any frequency within that particular range. The small knob concentric with the frequency knobs adjusts the shape over the range of 4 to 14 dB per octave. The low frequency range and high frequency range shape controls, when turned to the full ccw position, switch their respective functions into continuously variable frequency shelving curves. The knobs under each frequency adjust the amount of boost or cut up to 12 dB. A small push button places the equalizer networks in or out of the circuit while energizing a LED indicator showing when equalization is "In." The switching is silently accomplished by a photo cell, thereby permitting use of this function during programming.

A somewhat less obvious operational feature of this equalization module is the virtual lack of interaction between the amount of equalization and the actual shape of the peak. This allows changes of one control without the necessity of adjusting other controls to compensate for the effect of the first change.

ARCHITECTS' AND ENGINEERS' SPECIFICATIONS

-The Equalizer shall be a channel module type, with physical dimensions of not more than $11 / 2^{\prime \prime} w . x$ $8^{\prime \prime}$ h. $\times 61 / 4^{\prime \prime}$ d.; for console control panel installation. The channel module shall have three equalization bands, and variable shelving curves on low and high frequency controls. The equalizer module shall operate in three overlapping frequency ranges ($10-800 \mathrm{~Hz}$), $(100-8,000 \mathrm{~Hz}$) and ($400-25,600 \mathrm{~Hz}$). The frequency controls will be of continuous rotation design, and no rotary switches shall be utilized. Each frequency group shall be continuously variable in level from -12 to +12 dB with zero equalization at half-rotation. The shape or " Q " of each frequency group shall also be continuously variable from 4 to 14 dB per octave, switchable to infinitely variable shelving characteristics for the high and low frequency ranges. The equalizer module shall be a unity gain device which may be inserted in a program line of $0,+4$ or +8 dBm level. Switching of the equalizer into and out of the system shall be transient-free. The equalizer shall be constructed of modular, plug-in units. The input impedance shall be at least 100,000 ohms balanced, and the output impedance 10 ohms, designed to operate into a load of 300 ohms or greater. Maximum level shall be +24 dBm with frequency response uniform $\pm 0.1 \mathrm{~dB} 10$ to $40,000 \mathrm{~Hz}$. THD shall be less than 0.03% at any level up to clipping. The unit shall operate on ± 28 volts D.C. The unit shall be the ITI PARAMETRIC EQUALIZER MODULE MODEL MEP 130.

